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Non-dimensional parameters for the mean energy and scalar dissipation rates Ce and Ceh are examined

using direct numerical simulation (DNS) data obtained in a fully developed turbulent channel flow

with a passive scalar (Pr¼ 0.71) at several values of the Kármán (Reynolds) number hþ. It is shown

that Ce and Ceh are approximately equal in the near-equilibrium region (viz., yþ¼ 100 to y/h¼ 0.7)

where the production and dissipation rates of either the turbulent kinetic energy or scalar variance are

approximately equal and the magnitudes of the diffusion terms are negligibly small. The magnitudes

of Ce and Ceh are about 2 and 1 in the logarithmic and outer regions, respectively, when hþ is

sufficiently large. The former value is about the same for the channel, pipe, and turbulent boundary

layer, reflecting the similarity between the mean velocity and temperature distributions among these

three canonical flows. The latter value is, on the other hand, about twice as large as in homogeneous

isotropic turbulence due to the existence of the large-scale u structures in the channel. The behaviour

of Ce and Ceh impacts on turbulence modeling. In particular, the similarity between Ce and Ceh leads

to a simple relation for the scalar variance to turbulent kinetic energy time-scale ratio, an important

ingredient in the eddy diffusivity model. This similarity also yields a relation between the Taylor and

Corrsin microscales and analogous relations, in terms of hþ, for the Taylor microscale Reynolds

number and Corrsin microscale Peclet number. This dependence is reasonably well supported by both

the DNS data at small to moderate hþ and the experimental data of Comte-Bellot [Ph. D. thesis

(University of Grenoble, 1963)] at larger hþ. It does not however apply to a turbulent boundary layer

where the mean energy dissipation rate, normalized on either wall or outer variables, is about 30%

larger than for the channel flow. VC 2011 American Institute of Physics. [doi:10.1063/1.3584124]

I. INTRODUCTION

Over the past several decades, significant attention has

been given to the mean energy dissipation rate,

e ¼ mui;j ui;j þ uj;i

� �
; (1)

where u1, u2, and u3 denote the streamwise, wall-normal, and

spanwise velocity fluctuations, respectively; u, v, w are

sometimes used interchangeably with u1, u2, u3; m denotes

the kinematic viscosity and the overbar denotes averaging

with respect to x, z (x, y, z denote the streamwise, wall-nor-

mal, and spanwise directions, respectively) and t (time), of

the turbulent kinetic energy k (� u2
i /2) owing to the dissipa-

tive nature of turbulence (see, for example, the pioneering

work of Taylor1 and Kolmogorov2 and, more recently, the

review of Sreenivasan and Antonia3). e represents the rate at

which the energy is dissipated at the molecular level. In stat-

istically steady turbulence, this magnitude is equivalent to

the rate of energy transfer from large to small scales in the

energy cascade where it is classically assumed that eddies

break up successively through inertial forces until their size

becomes comparable to the Kolmogorov length scale

gð� ðm3=e Þ1=4Þ. This has led to the idea that e should become

independent of the viscosity in the limit of infinite Reynolds

number, thus suggesting a non-dimensional parameter

Ce ¼ e‘=v3; (2)

where v and ‘ denote the energy containing scales of velocity

and length, respectively. This form was first addressed by

Taylor;1 it is sometimes referred to as the zeroth law of turbu-

lence (e.g., Pearson et al.4); it is interpreted as the ratio of the

kinetic energy v2 to the corresponding time scale ‘=v. To date,

the possibility that the magnitude of Ce becomes constant has

been argued extensively in the literature (e.g., Batchelor,5

Sreenivasan,6–8 Lumley,9 Frisch,10 Kaneda et al.,11 Antonia et
al.,12 Antonia and Pearson,13 Burattini et al.,14 and Goto and

Vassilicos15). The constancy is also associated with the Re
independence of the drag coefficient (Frisch10) and other

turbulence modeling parameters, as mentioned below.

Following Eq. (2), the non-dimensional parameter,

Ce ¼ eLuu=u03; (3)

has been examined in detail in the wake of the seminal ex-

perimental work of Batchelor,5 where ‘ ¼ Luu and v ¼ u0

(Luu is the integral length scale of u and the prime denotes
a)Electronic mail: habe@chofu.jaxa.jp.
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the root-mean-square value). Unless otherwise stated, Luu is

hereafter defined as

Luu ¼
ð1

0

RuuðrÞdr; (4)

where RuuðrÞð� uðxÞuðxþ rÞ=u02Þ is the longitudinal two-

point correlation of u. Sreenivasan7 collected a large body of

experimental data for Eq. (3) in grid turbulence and pointed

out that Ce becomes constant when the Taylor microscale

Reynolds number Rk1(: u0k1/m) is larger than 50 (k1(:u0/
u;01) is the longitudinal Taylor microscale). Sreenivasan7 also

evaluated Ce in other turbulent flows, observing that the

effects of shear and inhomogeneity are not negligible, viz.,

the magnitude of Ce in either homogenous shear flows or in-

homogeneous flows is not the same as in grid turbulence. In

the latter context, Burattini et al.14 revisited the magnitude

of Ce in grid turbulence, two-dimensional wakes, and homo-

geneous shear flows. They noted that it exhibits a significant

variation, typically in the range 0.5–2.5, for Rk1> 50. The

previous studies suggest that the magnitude of Ce becomes

constant when Rk1 is sufficiently large but that it depends on

the type of flow. Even in the same flow, there is evidence to

suggest that the magnitude can depend strongly on the initial

conditions (e.g., Antonia et al.12 and Antonia and Pearson13).

A significant amount of data for Ce has also been

obtained from direct numerical simulations (DNSs) of ho-

mogeneous isotropic turbulence. In the latter flow, Luu is

defined as

Luu ¼
p

2u02

ð1
0

E kð Þ
k

dk; (5)

where E kð Þ is the 3D energy spectrum and k the 3D wavenum-

ber. From his survey of existing DNS data (Rk1¼ 21–240),

Sreenivasan8 indicated that while Ce tends to become con-

stant for Rk1> 100, its magnitude depends on how the turbu-

lence is forced at low wavenumbers. Goto and Vassilicos15

varied this large-scale forcing systematically in their DNSs

(Rk1¼ 60.7–168). They observed that Ce depends on the

external force which sustains the turbulence independently

of Rk1. Kaneda et al.11 performed high resolution DNSs up

to Rk1¼ 1201. They noted that while the magnitude of Ce

can vary with forcing for Rk1< 250, it tends to a constant

value (0.4–0.5) at higher Rk1.

For the scalar field, some information has also been

gleaned for the normalized parameter,

Ceh ¼ eh‘=v/
2; (6)

based on the expectation that, like e, eh should become con-

stant when Rk1 !1, where

eh ¼ jh;i h;i (7)

is the mean scalar dissipation rate of the temperature var-

iance kh (� h2/2) (j is the thermal diffusivity and h the tem-

perature fluctuation) (e.g., Lumley,9 Xu et al.,16 Watanabe

and Gotoh,17 and Donzis et al.18). By similarity to Eq. (3),

the non-dimensional form

Ceh ¼ ehLuu=u0h02 (8)

follows from (6) when ‘ ¼ Luu, v ¼ u0, and / ¼ h0. Whilst

Ceh may approach a constant at high Rk1, there is evidence to

suggest that its magnitude depends on Pr � m=jð Þ (the mo-

lecular Prandtl number) or Sc (the Schmidt number) (Wata-

nabe and Gotoh17 and Donzis et al.18) and initial conditions

(Donzis et al.18) when Rk1 is small.

In wall turbulence, e and eh may also be described inde-

pendently of the viscosity away from the wall. As for other

turbulent flows, the most likely normalized parameters should

be Eqs. (3) and (8) although other non-normalized forms may

apply in the overlap (logarithmic) region. If it is assumed that

‘ ¼ juy and v ¼ us (us and ju denote the friction velocity and

the von Kármán constant, respectively), then

CeEQ ¼ ey=u3
s ¼ 1=ju (9)

(see also McKeon and Morrison19). Similarly, with ‘ ¼ jhy
and /¼Ts (Ts and jh denote the friction temperature and the

von Kármán constant in the mean temperature distribution,

respectively), we obtain

CehEQ ¼ ehy=usT
2
s ¼ 1=jh : (10)

Equations (9) and (10) imply a relationship between the nor-

malized parameters and the von Kármán constants. It should

be noted that underpinning Eqs. (9) and (10) is the concept

of local energy equilibrium (viz., Pk¼ e and Ph¼ eh) (Pk and

Ph are the mean production rates for k and kh). Experimen-

tally, the latter assumption allows one to infer e and eh indi-

rectly (and accurately) from measured mean velocity and

temperature distributions. It also leads to model parameters

CD ¼ Cl ¼ u4
s=k2 (11)

in one- and two-equation models, viz.,

e ¼ CD

ffiffiffi
k
p 3

=‘; (12)

and the turbulent eddy viscosity,

mt ¼ Clk2=e: (13)

CD and Cl are hence associated with the normalized parame-

ters; these magnitudes are often taken as 0.09 [this can also

be estimated via Eq. (11)]. CD and Cl are also related to Ck

in the eddy diffusivity model

jt ¼ ck k2=e
� �

Rp; (14)

where

R ¼ kh=ehð Þ= k=eð Þ: (15)

Note that R denotes the time scale ratio of the temperature

variance kh=eh to the turbulent kinetic energy k=e; near-wall

damping functions are omitted in Eqs. (13) and (14). Nagano

and Kim20 used p¼ 1/2, while Yoshizawa21 used p¼ 2.

Introducing the turbulent Prandtl number Prt ð� mt=jtÞ leads

to a relationship between Cl and Ck, viz.,
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Prt ¼ Cl=Ck
� �

R�p: (16)

Figure 1 suggests that energy equilibrium is indeed a better

approximation for a turbulent channel flow than a turbulent

boundary layer, thus implying that Eqs. (9) and (10) are bet-

ter satisfied in the former flow. This also indicates that the

magnitudes of Ce and Ceh may not vary significantly in the

equilibrium region of the channel since there is little spatial

flux in the y direction. These normalized parameters, while

essential for both physical and modeling aspects, are how-

ever yet to be examined comprehensively.

Direct numerical simulations, with good spatio-temporal

resolution, have become indispensible for studying the proper-

ties of the small-scale turbulent motion. Most of the available

DNS databases for wall-bounded flows have been for a turbu-

lent channel flow, mainly due to the simple geometry of this

flow. The relevant Reynolds number (or Kármán number)

hþ(: ush/m ; us is the friction velocity and h the channel half-

width; the superscript denotes normalization by wall varia-

bles) currently extends to 2000 (Hoyas and Jiménez22). The

channel databases have also provided a wealth of information

for the small scale characteristics of turbulence (e.g., Kim and

Antonia23 and Antonia and Kim.24) In the outer region, when

Pr is close to unity, both e (Blackburn et al.25) and eh (Abe

et al.26) isotropic turbulence both statistically and instantane-

ously (see also the spectral and physical analogy by Antonia

et al.27). There is also evidence that e scales reasonably well

on us
3/y [viz., Eq. (9)] and us

3/h in the logarithmic and outer

regions, respectively (Hoyas and Jiménez22).

Whilst several features of e and eh, including possible

scaling laws, have been examined with the use of DNS data

for a turbulent channel flow, the normalized parameters have

yet to be tested rigorously. The main objective of this paper

is to clarify the dependence on the distance from the wall

and the Reynolds number of Eqs. (3) and (8) and the degree

of similarity to other turbulent flows using our DNS data-

bases (Abe et al.26,28) with Pr¼0.71. The relationships

between Eqs. (3) and (9) and between Eqs. (8) and (10) will

also be investigated. Particular attention is given to part of

the outer region where viscous effects are small and energy

equilibrium (viz., Pk¼ e and Ph¼ eh) represents a good

approximation. It is hoped that the present investigation will

shed some light on the scaling laws of e and eh in the equilib-

rium region of a turbulent channel flow and should hence be

useful for developing turbulence models [viz., Eqs. (12)–

(14)] given the relationship between the normalized parame-

ters and the model parameters.

The paper is organized as follows. The present DNS

databases are described briefly in Sec. II. In Sec. III, the

normalized energy and scalar dissipation rates [viz., Eqs.

(3) and (8)] are examined across the channel, with an em-

phasis on the logarithmic and outer regions and the effect

of Luu on the magnitudes of Ce and Ceh. In Sec. IV, we con-

sider how the normalized parameters relate to the time-

scale ratio of the scalar variance to the turbulent kinetic

energy R [viz., Eq. (15)] and a simple relationship between

the longitudinal Taylor microscale k1 and the Corrsin

microscale for the temperature fluctuation kh(: h0/h;01) is

proposed. In Sec. V, an attempt is made to formulate a de-

pendence of Rk1 and Pe (: u0kh/j) on hþ in the outer

region, using values of Ce, Ceh, u0, and Luu. We also con-

sider the applicability of the proposed form of Rk1 to the

turbulent boundary layer.

II. DNS DATABASES

The present DNS databases have been obtained from

simulations with passive scalar transport by Abe et al.26,28

The flow is a fully developed turbulent channel flow driven

by a constant mean streamwise pressure gradient. The pas-

sive scalar (temperature) is introduced through uniform

heating from both walls. Four values of hþ (¼180, 395,

640, and 1020) are used. The molecular Prandtl number

(Pr) is 0.71.

The governing equations for the velocity and scalar

fields consist of the Navier-Stokes and energy (conservation)

equations, respectively. For the latter, a constant time-aver-

aged heat-flux thermal boundary condition (Kasagi et al.29)

is used. This condition is sometimes referred to as the isofluxFIG. 1. Distributions of Pk=e and Ph=eh: (a), (b) Pk=e; (c) Ph=eh.
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condition, which is more realistic in experiments than the

isothermal condition. Under the present condition, the bulk

and wall mean temperatures increase linearly in the x direc-

tion, while the wall temperature fluctuation is assumed to be

zero. This yields a relation

@ Tþh i
@x#

¼
@ Tþm
� �
@x#

¼
@ Tþw
� �
@x#

¼ 2Ð 2

0
�U1dy#

(17)

for the present configuration (T, Tm, and Tw are the local,

bulk, and wall temperatures, respectively; the angular

bracket represents integration over z and t (time); the super-

script # denotes the normalization by the channel half-width

h [note that t is normalized by both us and h]). In the simula-

tions of Refs. 26 and 28, an instantaneous temperature differ-

ence H defined by

T ¼ @ Twh i
@x

x�H (18)

is applied to the energy equation, which leads to the trans-

formed energy equation expressed as

@Hþ

@t#
þ Uþj

@Hþ

@x#
j

¼ 1

hþ � Pr

@2Hþ

@x#2
j

þ U1

2Ð 2

0
�U1dy#

; (19)

where Ui is the instantaneous velocity in the ith direction

(see also Ref. 29). The last term of Eq. (19) comes from

relation (17) and plays a role in keeping the time-averaged

heat-flux constant across the channel. As in the case of the

Navier-Stokes equations, the no-slip and periodic boundary

conditions are used for Eq. (19) in the y and other (x and z)

directions, respectively.

The present thermal boundary condition differs only

slightly from the internal source heating condition used by

Kim and Moin.30 In the latter case, the last term of Eq. (19)

is set to be 2 so that the time-averaged heat-flux is not con-

stant across the channel, although the wall temperature fluc-

tuation is zero. Kasagi et al.29 noted that basic turbulence

statistics and turbulence structures obtained from these two

simulations should be nearly identical.

The domain size (Lx�Ly�Lz), number of grid points

(Nx�Ny�Nz), and spatial resolution (Dx, Dy, Dz) are given

in Table I. Note that the superscript * represents normaliza-

tion by either g, vKð� ðmeÞ1=4Þ (Kolmogorov velocity scale),

or hBð� ðehm1=2e�1=2Þ1=2Þ (Batchelor temperature scale) and

the subscripts w and c refer to values at the wall and center-

line, respectively. Since Pr is smaller than 1 in the present

case, the Batchelor length scale, gBð� gPr�1=2Þ , is slightly

larger than the Kolmogorov scale. The spatial resolution of

the simulations is sufficient to describe adequately the

behavior of all the scales of the flow up to the largest value

of hþ considered here (see also Abe et al.26,28 and Antonia

et al.27).

III. NORMALIZED ENERGY AND SCALAR
DISSIPATION RATES

Figure 1 shows that there is an extended region, viz.,

yþ¼ 30 to y/h¼ 0.7, where the ratios Pk=e and Ph=eh are

close to 1, at least when hþ is sufficiently large (the DNS

data in the present flow by Hoyas and Jiménez22 and Hu et
al.31 for Pk=e and those by Kasagi et al.29 for Ph=eh are

included for comparison). This region could therefore be

interpreted as a region where energy equilibrium is validated

approximately since the mean production and dissipation

rates of the turbulent kinetic energy are approximately equal.

Note that this region extends beyond that which is normally

referred to as the log-law region. This seems to be associated

with the presence of large-scale structures of u and h span-

ning the channel where the intense sites of e and eh are most

likely to coincide with the large-scale anisotropic u and h
structures, respectively (see, for example, Abe et al.26 and

Antonia et al.27). Such an equilibrium region is less evident

in a turbulent boundary layer (the DNS data for Pk=e of Spa-

lart,32 Simens et al.,33 and Schlatter et al.34 are included in

Fig. 1(b), where d99 is used as the outer representative length

scale). The difference appears to be mainly due to the impor-

tance of the advection term in the outer region of the bound-

ary layer. This also implies that indirect estimates of e and eh

from Pk and Ph would be less accurate in the latter flow.

In order to assess more precisely the extent of the equi-

librium region, the magnitudes of the diffusion terms in the

budgets of k and kh has also been examined. The transport

equation of k, normalized by us
4/m, is written as

0 ¼�uþi uþj
@ �Uþi
@xþj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1

� @

@xþj

1

2
uþ2

i uþj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

� @

@xþj

1

2
uþi pþ

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

3

þ @2

@xþ2
j

1

2
uþ2

i

� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

4

� @uþi
@xþj

 !2

|fflfflfflfflffl{zfflfflfflfflffl}
5

; (20)

where terms 1, 2, 3, 4, and 5 denote the production, turbulent

diffusion, pressure diffusion, molecular diffusion, and homo-

geneous dissipation rate, respectively. Note that in Eq. (20),

the homogeneous dissipation rate ehom is used instead of the

TABLE I. Domain size, grid points, and spatial resolution.

hþ 180 395 640 1020

Lx�Ly�Lz 12.8h� 2h� 6.4h

Lx
þ�Ly

þ�Lz
þ 2304� 360� 1152 5056� 790� 2528 8192� 1280� 4096 13056� 2040� 6528

Nx�Ny�Nz 768� 128� 384 1536� 192� 768 2048� 256� 1024 2048� 448� 1536

Dxþ, Dyþ, Dzþ 3.00, 0.20–5.90, 3.00 3.29, 0.15–6.52, 3.29 4.00, 0.15–8.02, 4.00 6.38, 0.15–7.32, 4.25

Dxw
*, Dyw

*, Dzw
* 1.94, 0.13, 1.94 2.24, 0.10, 2.24 2.77, 0.11, 2.77 4.46, 0.11, 2.97

Dxc
*, Dyc

*, Dzc
* 0.82, 1.62, 0.82 0.74, 1.47, 0.74 0.82, 1.64, 0.82 1.16, 1.33, 0.77
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full dissipation rate e. Also, the transport equation of kh, nor-

malized by us
2Ts

2/m, is

0 ¼�hþuþj
@ �Hþ

@xþj
þ hþuþ1

@h �Tmiþ

@xþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

� @

@xþj

1

2
hþ2uþj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

þ 1

Pr

@2

@xþ2
j

1

2
hþ2

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

3

� 1

Pr

@hþ

@xþj

 !2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
4

; (21)

where terms 1, 2, 3, and 4 are the production, turbulent diffu-

sion, molecular diffusion, and dissipation rate, respectively.

Figure 2 displays that the turbulent and pressure diffusions

are actually negligible only in the region yþ¼ 100 to

y/h¼ 0.7. It seems therefore more appropriate to refer to this

latter region as a “near-equilibrium region.” With the excep-

tion of the latter region, the magnitudes of the diffusion

terms are larger for Eq. (20) than for Eq. (21). In particular,

the magnitude of the pressure diffusion term in Eq. (20),

which is absent in Eq. (21), is appreciable for yþ< 100. This

suggests that the scalar field is closer to an equilibrium state

than the velocity field over a wider range of the channel. It

should also be noted that there is weak hþ dependence on the

diffusion terms for both Eqs. (20) and (21), which indicates

that the region below yþ¼ 100 is unlikely to be in energy

equilibrium, at least for hþ¼ O(102)–(103).

Figure 3 indicates that Ce [Eq. (3)] and Ceh [Eq. (8)]

have nearly the same magnitude in the range yþ¼ 100 to y/h
¼ 0.7 (DNS (Hoyas and Jiménez22 and Hu et al.31) and

experimental (Comte-Bellot35) data are also included) in

which energy equilibrium is approximated closely. Note that

when obtaining Luu [Eq. (4)], the integration of Ruu has been

carried out up to a separation which corresponds to the first

zero crossing point (the extent of the integration is taken to

Lx/2 when Ruu remains positive).

Outside the wall region, the magnitudes of Ce and Ceh

decrease significantly with increasing distance from the wall

up to y/h¼ 0.2. Such y dependence may be explained via the

distributions of eh=u3
s , ehh=usT

2
s , u0=us, h0=Ts, and Luu=h

(Figs. 4–6) since

eLuu=u03 ¼ eh=u3
s

� �
� ðLuu=hÞ � u3

s=u03
� �

; (22)

ehLuu=u0h02¼ ehh=usT
2
s

� �
� ðLuu=hÞ � us=u0ð Þ � T2

s=h
02� �
: (23)

In that region, the magnitudes of eh=u3
s and ehh=usT

2
s are by

one order larger than those of u0=us, h0=Ts, and Luu=h owing

to the appreciable magnitudes of the mean velocity and tem-

perature gradients. There is hence a similarity in shape

between Ce and eh=u3
s [viz., Figs. 3(a) and 4(a)] and between

Ceh and ehh=usT
2
s [viz., Figs. 3(b) and 4(b)].

In the logarithmic region (viz., yþ¼ 100 to y/h¼ 0.2), the

values (� 2) of Ce and Ceh are nearly identical with those for

CeEQ [Eq. (9)] and CehEQ [Eq. (10)] (see insets of Fig. 4) and

hence with ju
–1 and jh

–1. The same values of Ce and CeEQ are

reported by Sreenivasan7 and McKeon and Morrison19 for a

turbulent boundary layer and a turbulent pipe flow, respec-

tively. It may thus be tempting to conclude that in the logarith-

mic region Ce and Ceh are identical for these three canonical

flows. This equality appears to be associated with the similar-

ity between the mean velocity and temperature distributions.

FIG. 2. Distributions of the diffusion terms in the budgets of k and kh nor-

malized on inner variables: (a) terms 2 and 3 in Eq. (20); (b) term 2 in Eq.

(21). In (a), – – – –, hþ¼ 1451 [Hu et al. (Ref. 31)]; — .. — .. — , hþ¼ 2003

[Hoyas and Jiménez (Ref. 22)], while in (b), — .. — .. —, hþ¼ 150 [Kasagi

et al. (Ref. 29)]. FIG. 3. Distributions of Ce and Ceh: (a) Ce; (b) Ceh.
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For 0.3< y/h< 0.7, the variations of Ce and Ceh are

small and their magnitudes are close to 1. This latter value is

however about twice as large as in homogeneous isotropic

turbulence (Sreenivasan,8 Kaneda et al.,11 Watanabe and

Gotoh,17 and Donzis et al.18). This is most likely associated

with the existence of large-scale u structures in the outer

region since Luu/h exhibits a nearly parabolic distribution

with a tendency to a plateau (�1) [see Fig. 6(a)], although

the magnitudes of eh=u3
s , ehh=usT

2
s , u0=us, and h0=Ts decrease

monotonically (see Figs. 4 and 5).

The spread in the magnitudes of Ce and Ceh most prob-

ably reflects the difficulty in determining Luu accurately.

Although the large-scale structures (�3h) should be

adequately resolved by the current DNSs, very large-scale

structures with a length scale larger than 25h (Hutchins and

Marusic36 and Monty and Chong37) are unlikely to be cap-

tured correctly. To gain further insight into this, we have

integrated the two-point correlation of u for two different

intervals, viz.,

Luu1 ¼
ð3h

0

RuuðrÞdr; (24)

Luu2 ¼
ðLx=2

3h

RuuðrÞdr; (25)

where Luu1 and Luu2 correspond to the contributions from the

large-scale structures and the very-large-scale structures,

respectively. Figure 6 suggests that while the level of Luu1

increases slowly with hþ in the outer region, Luu2 exhibits a

large spread. The latter is associated with the difficulty in

obtaining the data at large separations accurately, presum-

ably reflecting the insufficiency of either the computational

domain size or the sampling time period.

The effects of Rk1 and the Kolmogorov-normalized

mean shear S* � d �U�=dy�ð Þ may not be entirely dismissed in

the context of the magnitudes for Ce and Ceh. In the present

flow, the magnitudes of Rk1 and S* do not depend noticeably

on y/h for a particular value of hþ in the near-equilibrium

region. For a given value of y/h, Rk1 increases whilst S*
decreases as hþ increases. At y/h¼ 0.4, where Rk1 exhibits

a local maximum [see Fig. 11(a)], the magnitude of

Rk1 increases monotonically from 62 (hþ¼ 180) to 149

(hþ¼ 1020), whilst that of S* decreases systematically from

0.23 (hþ¼ 180) to 0.12 (hþ¼ 1020). From the previous

observations, one may infer that, in the present flow, the

effect of Rk1 and S* on the magnitudes of Ce and Ceh should

be less important than that of Luu.

In the latter context, replacing Luu by Lhh in Eq. (8)

yields

FIG. 4. Distributions of eh=u3
s (a) and ehh=usT

2
s (b) where the insets (a) and

(b) show the distributions of ey=u3
s and ehy=usT

2
s , respectively. ––––––,

hþ¼ 1020; – – – –, hþ¼ 640; ……….., hþ¼ 395; — . — . —, hþ¼ 180; - - - - -,

hþ¼ 2003 [Hoyas and Jiménez (Ref. 22)]; — .. — .. —, hþ¼ 150 [Kasagi et al.
(Ref. 29)].

FIG. 5. Distributions of u0þ and h0þ: (a), (b) u0þ; (c) h0þ.
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Ceh1 ¼ ehLhh=u0h02; (26)

where

Lhh ¼
ð1

0

RhhðrÞdr: (27)

This reduces the magnitude by a factor of about two [see the

difference between Ceh and Ceh1 in Fig. 3(b)], reflecting the

smaller extent of the large-scale h structures relative to the

large-scale u structures (see Antonia et al.27).

In the context of forming Ce, there are advantages in

replacing Luu by Lqq, viz.,

Lqq ¼
ð1

0

RuuðrÞdr þ
ð1

0

RvvðrÞdr þ
ð1

0

RwwðrÞdr; (28)

where q2 � u2
i . Antonia et al.27 reported that the analogy, in

both spectral and physical spaces, between q (the fluctuating

velocity vector) and h holds reasonably well throughout the

channel when Pr is close to unity. This analogy suggests

another possible form for the normalized mean energy dissi-

pation rate, viz.,

Ce1 ¼ eLqq=u0q02: (29)

A comparison between Ce1 and Ceh1 along with that between

Ce and Ceh is made at hþ¼ 640 and is shown in Fig. 7. Like

Ce and Ceh, the normalized parameters are in closer agree-

ment when Lqq and Lhh are used in conjunction with q2 and

h2 (viz., Ce1 and Ceh1) in the near-equilibrium region. The

present result reflects the reasonable similarity between q2

and h2. Note that the variation of Lhh=Lqq is small across the

channel [Fig. 9(c)], which is another consequence of the

excellent analogy between q and h.

From a turbulence modeling viewpoint, it is worth

enquiring into the difference between the magnitude of Luu

and that of the mixing length Lm (Lm¼ juy near the wall,

while Lm¼ 0.1h in the outer region). In the present flow, the

mixing length is more likely to be identifiable with the dissi-

pation length scale

Le ¼ �uvð Þ3=2=e (30)

[Fig. 8(a)] than with Luu [Fig. 6(a)]. Bradshaw38 also sug-

gested that the magnitude of Lm is nearly equal to that of Le

across most of the boundary layer. After substituting Le andffiffiffi
k
p

for ‘ and v, respectively, in Eq. (2), we obtain another

normalized parameter, viz.,

Ce2 ¼ eLe=
ffiffiffi
k
p 3

; (31)

this relation being identical with Eq. (12). Figure 8(b) shows

that Ce2� 0.1 over the equilibrium region. This value is not

far from CD¼Cl¼ 0.09 in the model calculations, which

leads to reasonable model predictions in the present flow.

IV. RELATIONSHIP BETWEEN THE NORMALIZED
PARAMETERS AND TIME SCALE RATIO

The approximate equality of Ce and Ceh in the region

yþ¼ 100 to y/h¼ 0.7 has important implications for the time

scale ratio R. By substituting Eqs. (3) and (8) into Eq. (15),

we obtain

FIG. 6. Distributions of Luu/h: (a) Luu/h; (b) Luu1/h; (c) Luu2/h.

FIG. 7. Distributions of Ce, Ceh, Ce, and Ceh1 at hþ¼ 640.
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R ¼ uu

qq

Ce

Ceh
: (32)

Also, the near equality of Ce1 [Eq. (29)] and Ceh1 [Eq. (26)]

in this region leads to an alternative form

R ¼ Lhh

Lqq

Ce1

Ceh1

: (33)

Since Ce ’ Ceh and Ce1 ’ Ceh1 in this range, R may be

approximated in two different ways

R ¼ uu=qq (34)

and

R ¼ Lhh=Lqq: (35)

Equations (34) and (35) are tested against the DNS data in

Fig. 9, which indicates that these equations are reasonable

approximations to R over the region yþ¼ 100 to y/h¼ 0.7

(one exception is hþ¼ 180 due to the low Reynolds-number

effects) for Pr¼ 0.71. The magnitude of R, however,

increases slowly with increasing Pr in the outer region

(see Kasagi and Ohtsubo,39 Kawamura et al.,40,41 Schwert-

firm and Manhart,42 and Kozuka et al.43); for hþ¼ 395, R
varies from 0.1 (Pr¼ 0.025) to 1 (Pr¼ 10). This needs to be

incorporated into Eq. (34) when formulating R. The latter

formula may allow us to exclude R from Eq. (14). This may

be desirable for developing the eddy diffusivity model since

the inclusion of the scalar time scale in Eq. (14) violates the

linearity principle of the scalar transport (Pope44).

Equation (34) also suggests the existence of a possible

relationship between k1 and kh. Assuming isotropic forms

for e and eh, R may be written as

R ¼ 5Pr
uu

qq

kh

k1

� 	2

: (36)

Substituting Eq. (34) into Eq. (36) leads to

kh ¼ k1=
ffiffiffiffiffiffiffiffi
5Pr
p

: (37)

This relation may be useful for estimating kh, although the

Prandtl-number effect on R is expected to affect the predic-

tion of Eq. (37) to some extent. This is tested in Fig. 10

where the DNS channel flow data of Kozuka et al.43 (hþ¼
395 and Pr¼ 2 and 10) and Abe et al.28 (hþ¼ 395 and

Pr¼ 0.025) are included to clarify the Prandtl-number de-

pendence. The isotropic form khiso (� h0=
ffiffiffiffiffiffiffiffiffiffiffiffi
eh=3j

p
) is also

used; the isotropic relation is reasonable in the outer region,

consistent with the results of Antonia et al.27 for eiso and

ehiso, except for hþ¼ 180 due to the low Reynolds-number

effects [see Fig. 10(a)]. In the near-equilibrium region,

FIG. 8. Distributions of Le/h and Ce2: (a) Le/h; (b) Ce2.

FIG. 9. Distributions of R, uu=qq, and Lhh/Lqq: (a) R; (b) uu=qq; (c) Lhh/Lqq.
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Eq. (37) is not applicable for Pr¼ 0.025 (viz., mercury) but

is likely to be valid at least for Pr¼ 0.71–10 (viz., air and

water), the latter Pr range being larger than that for Eq. (34).

This finding is of importance for formulating Pe, as dis-

cussed in Sec. V.

V. FORMULATIONS FOR Rk1 AND Pe

Empirical expressions for the dependence on hþ of Rk1

and Pe in a part of the outer region (viz., 0.3< y/h< 0.7) can

be established with the use of the approximate equality

between Ce and Ceh in this range. With the use of the approx-

imation Ce¼Ceh¼ 1.2 and Luu/h¼ 1.2 and the assumption of

local isotropy, Rk1 and Pe may be expressed as

Rk1 ¼
u0k1

m
¼

ffiffiffiffiffiffiffi
u0þ
p

�
ffiffiffiffiffi
15

Ce

r
�
ffiffiffiffiffiffiffi
Luu

h

r
�
ffiffiffiffiffiffi
hþ
p

� 3:9
ffiffiffiffiffiffiffiffiffiffiffiffi
u0þhþ
p

(38)

and

Pe ¼ u0kh

j
¼

ffiffiffiffiffiffiffi
u0þ
p

�
ffiffiffiffiffiffiffi
3

Ceh

r
�
ffiffiffiffiffiffiffi
Luu

h

r
�
ffiffiffiffiffiffiffiffiffiffiffi
hþPr
p

� 1:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0þhþPr
p

;

(39)

where u0þ depends on y. Note that Eqs. (38) and (39) yield

Pe ¼
ffiffiffiffiffiffiffiffiffiffi
Pr=5

p
Rk1; (40)

which is analogous to the previously obtained relationship

between k1 and kh, viz., Eq. (37).

Our DNS databases (180 	 hþ 	 1020) suggest that u0þ

can be approximated by

u0þ ¼ �1:25 y=hð Þ þ 2 (41)

[see Fig. 5(a)]. While a more rigorous form may be obtained

by including Reynolds-number effects, Eq. (41) is reasonable

at least for hþ¼ O(102) � (103). With regard to the distribu-

tions of u0þ, a discernible difference may be noticed between

the DNS [Hoyas and Jiménez22 (HJ)] and experimental

[Comte-Bellot35 (CB)] data at a comparable hþ. This dis-

crepancy may be due to us being underestimated in CB’s

measurements since her distributions of U
þ

(not shown here)

and u0þ [Fig. 5(a)] for the lowest hþ are about 8% larger than

those of HJ in the outer region. For the highest hþ of the CB

data, the effect of compressibility may not be dismissed.

It should also be noted that whilst the magnitude of u0þ

seems to increase slowly with hþ in the outer region, the

measurements do not always indicate consistent trends for

hþ> 1000; CB and WW (Wei and Willmarth45) report larger

magnitudes than BA (Balakumar and Adrian46) and M

(Monty47), while the distributions of BA, M, and HMS (Hu

et al.31) are close to each other at a comparable hþ.

Equations (38) and (39) are tested in the region 0.3< y/h
< 0.7 in Fig. 11. For both Rk1 and Pe, the agreement between

these predictions and the DNS data is satisfactory. The poor

agreement with the CB data particularly for her largest hþ

seems to be due to the limited spatial resolution of the hot

wire. This attenuates small-scale intensities significantly

(Hutchins et al.48) and would lead to an underestimation of

u;01 (viz., e) and an artificial increase in k1 (viz., Rk1).

We focus here on the behaviors of Rk1 and Pe at y/h
¼ 0.4 where Rk1 and Pe exhibit local maxima (see Fig. 11).

At this location, Eqs. (38) and (39) can be rewritten as

FIG. 10. Distributions of kh/h and khiso/h: (a) kh/h and khiso/h for Pr¼ 0.71;

(b) khiso/h for hþ¼ 395.

FIG. 11. Formulations for Rk1 [Eq. (38)] and Pe [Eq. (39)] in the region

0.3< y/h< 0.7: (a)Rk1; (b) Pe: ––––––, hþ¼ 1020; – – – –, hþ¼ 640;
……….., hþ¼ 395; — . — . —, hþ¼ 180; - - - - -, predictions. Symbols denote

the experimental data of Comte-Bellot (Ref. 35): *, hþ¼ 2340; ~,

hþ¼ 4800; h, hþ¼ 8160.
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Rk1 ¼ 4:8
ffiffiffiffiffiffi
hþ
p

(42)

and

Pe ¼ 2:1
ffiffiffiffiffiffiffiffiffiffiffi
hþPr
p

: (43)

The predictions of Eqs. (42) and (43) are shown in Fig. 12;

the data for Rk1iso(�u0k1iso/m) and Peiso (�u0khiso/j) are also

included in Fig. 12. Note that k1iso � u0=
ffiffiffiffiffiffiffiffiffiffiffiffi
�e=15m

p
. The pre-

dicted values are in close agreement with the DNS data;

there is only a small difference between Rk1 and Rk1iso and

also between Pe and Peiso. The magnitudes of Rk1 originally

given by CB are slightly larger than the predictions of

Eq. (42) especially for her highest hþ. The CB data, how-

ever, become closer to the present predictions when a correc-

tion is applied for k1 based on the assumption Pk¼ e. For Pe,

the Prandtl-number effect seems to be reproduced reasonably

well for Pr¼ 0.71–10, consistently with the results for kh

[see also Fig. 10(b)].

It seems appropriate to enquire if Eqs. (42) and (43)

apply to other wall-bounded flows. The boundary layer

measurements of Saddoughi and Veeravalli49 at

d99
þ¼ 3.4� 104 (y/d99� 0.5) and 1.7� 105 (y/d99� 0.4)

indicate that Eq. (42) overestimates Rk1 by about 30%; the

latter values seem to be approximated by

Rk1 ¼ 3:4
ffiffiffiffiffiffi
dþ99

q
(44)

[see Fig. 12(a)]. The data for Rk1iso by Simens et al.33

(d99
þ¼ 445–690) and Schlatter et al.34 (d99

þ¼ 252–1271)

also agree reasonably well with Eq. (44). This appears to

be due to eþ being about 30% larger in a boundary layer

than in a channel over the equilibrium region, although the

magnitude of u0þ is nearly the same in the two flows. A

comparison of DNS data for u0 and ehomð� mu2
i;jÞ (the homo-

geneous energy dissipation rate) between the channel flow

(Abe et al.,26 Hu et al.,31 and Iwamoto et al.50) and the

boundary layer (Simens et al.33 and Schlatter et al.34) at

comparable hþ and d99
þ seems to confirm this (see Fig. 13

and also the comparison of u0þ by Jiménez and Hoyas51).

Note that the fall-off in the u0 and ehom distributions for the

turbulent boundary layer at y/d99> 0.7 is caused by the

intermittency associated with the turbulent/non-turbulent

interface. The implication is that for a given value of the

Kármán number (hþ or d99
þ), the maximum value of Rk1 is

larger for the channel flow than the boundary layer [see

Fig. 12(a)]. This also suggests that the former flow may be

a better candidate for examining the approach towards

local isotropy than the latter.

VI. CONCLUSIONS

DNS databases in a turbulent channel flow with passive

scalar transport (hþ¼ 180, 395, 640, and 1020, Pr¼ 0.71)

are used to examine the normalized mean energy and scalar

dissipation rates Ce and Ceh [viz., Eqs. (3) and (8)]. Particular

attention is given to the outer region. The main conclusions

are as follows.

An interesting feature of a fully developed turbulent

channel flow is the existence of a region, which starts in the

inner region and extends well into the outer region of the

FIG. 12. Formulations for Rk1 [Eqs. (42) and (44)] and Pe [Eq. (43)] at

y/h¼ 0.4: (a) Rk1; (b) Pe.. In (a), *, Rk1 (Present); ~, Rk1iso (Present); h,

Rk1iso [Hoyas and Jiménez (Ref. 22)]; !, Rk1iso [Hu et al. (Ref. 31)]; þ, Rk1

[Comte-Bellot (Ref. 35)]; �, Rk1 [Comte-Bellot (Ref. 35)] for which the cor-

rection was made; 
, Rk1 [Saddoughi and Veeravalli (Ref. 49)]; ~, Rk1iso

[Simens et al. (Ref. 33)]; n, Rk1iso [Schlatter et al. (Ref. 34)].

FIG. 13. Comparisons for u0 and ehom between the channel flow and the

boundary layer: (a) u0þ; (b) ehom normalized by either inner (us
4/m) or outer

[U0
3/h or U0

3/d99 (U0 denotes either the mean centreline velocity or free-

stream velocity)] variables.
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channel. In this region, the ratios Pk=e and Ph=eh are close to

1. The region yþ¼ 100 to y/h¼ 0.7, where the equality

Pk=e¼Ph=eh¼ 1 is satisfied closely and the magnitudes of

the diffusion terms are negligible, can be appropriately

described as a near-equilibrium region, at least for

hþ¼ O(102) � (103). In this region, e and eh, normalized by

u03=Luu and u0h02=Luu, viz., Ce and Ceh, are approximately

equal. Their magnitudes are about 2 and 1 in the logarithmic

and outer regions, respectively, when the Kármán number

hþ is sufficiently large. The former magnitude, which is

identical with that of ey=u3
s or ehy=usT

2
s and hence with ju

–1

or jh
–1, tends to be approximately the same for the channel,

pipe, and boundary layer. This reflects the similarity between

the mean velocity and temperature distributions among these

three canonical flows. When the Kármán number is large,

these distributions should be relevant to the log-law (see, for

example, Nagib and Chauhan52 and Marusic et al.53). The

latter magnitude is, on the other hand, about twice as large as

in homogeneous isotropic turbulence due mainly to the exis-

tence of large-scale u structures in the outer region of the

channel. In the present flow, the effect of Rk1 and S* on the

magnitudes of Ce and Ceh is less important than that of Luu.

Replacing Luu by Lhh in Ceh (viz., Ceh1) reduces the magni-

tude by a factor of about two, reflecting the smaller extent of

the large-scale h structures relative to the large-scale u struc-

tures. It should also be noted that the similarity between Ce1

[Eq. (29)] and Ceh1 [Eq. (26)] in Fig. 7 is another conse-

quence of the spectral analogy between q and h.

The normalized parameters are also of importance from

a turbulence model standpoint. In this context, Ce2 [Eq.

(31)], which is identical with CD and Cl, is � 0.1 over the

equilibrium region. This mainly reflects the adequacy of the

current turbulence models for the present flow. There is also

a near equality between either Ce and Ceh or between Ce1 and

Ceh1 in the near-equilibrium range, which has an important

implication for the time scale ratio R, viz., R can be approxi-

mated with Eq. (34), without any information being required

about the scalar field, when the analogy between velocity

and scalar fields is reasonable (Pr � 1). The magnitude of R,

however, increases slowly with increasing Pr in the outer

region, and this needs to be taken into account when formu-

lating R. Whilst the current kh - eh model (e.g., Nagano and

Kim20 and Yoshizawa21), which used R in Eq. (14), gives

reasonable predictions, a formula of R may be useful for

developing the eddy diffusivity model since it would allow

the scalar time scale to be excluded from Eq. (14) and the

resulting jt model would then satisfy the linearity principle

of the scalar transport (Pope44).

It should be noted that the equality between Ce and Ceh

also leads to a simple relationship between k1 and kh, viz.,

Eq. (37). Note that Eq. (37) is likely to be applicable at least

for Pr¼ 0.71–10 (viz., air and water), the latter Pr range

being larger than that for Eq. (34). This equality can in turn

be used to establish analogous expressions for the depend-

ence on hþ of Rk1 and Pe in the outer region. The proposed

formulations for Rk1 and Pe, as given by Eqs. (38) and (39)

and also Eqs. (42) and (43), should be quite accurate for the

channel flow (see Figs. 11 and 12). As shown in Fig. 12(a),

similar formulations with slightly different numerical con-

stants should however be used in the boundary layer since

the magnitude of Rk1 is about 30% larger in the channel

flow than in the boundary layer for the same Kármán num-

ber (hþ or d99
þ) due to eþ being larger in the latter flow by

nearly the same amount. The energy dissipation rate in a

pipe flow is presumably closer to that in a channel flow

than in a boundary layer since in the outer region there

seems to be some structural similarity between the channel

and pipe but not between the channel (or pipe) and the

boundary layer (see Monty et al.54). The formulations

established for a channel flow should hence be applicable

to a pipe flow.
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